Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 376 - 400 of 663 results
376.

Intracellular signaling dynamics and their role in coordinating tissue repair.

blue red Cryptochromes LOV domains Phytochromes Review
Wiley Interdiscip Rev Syst Biol Med, 8 Feb 2020 DOI: 10.1002/wsbm.1479 Link to full text
Abstract: Tissue repair is a complex process that requires effective communication and coordination between cells across multiple tissues and organ systems. Two of the initial intracellular signals that encode injury signals and initiate tissue repair responses are calcium and extracellular signal-regulated kinase (ERK). However, calcium and ERK signaling control a variety of cellular behaviors important for injury repair including cellular motility, contractility, and proliferation, as well as the activity of several different transcription factors, making it challenging to relate specific injury signals to their respective repair programs. This knowledge gap ultimately hinders the development of new wound healing therapies that could take advantage of native cellular signaling programs to more effectively repair tissue damage. The objective of this review is to highlight the roles of calcium and ERK signaling dynamics as mechanisms that link specific injury signals to specific cellular repair programs during epithelial and stromal injury repair. We detail how the signaling networks controlling calcium and ERK can now also be dissected using classical signal processing techniques with the advent of new biosensors and optogenetic signal controllers. Finally, we advocate the importance of recognizing calcium and ERK dynamics as key links between injury detection and injury repair programs that both organize and execute a coordinated tissue repair response between cells across different tissues and organs. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
377.

Cell and tissue manipulation with ultrashort infrared laser pulses in light-sheet microscopy.

blue CRY2/CIB1 D. melanogaster in vivo Developmental processes
Sci Rep, 6 Feb 2020 DOI: 10.1038/s41598-019-54349-x Link to full text
Abstract: Three-dimensional live imaging has become an indispensable technique in the fields of cell, developmental and neural biology. Precise spatio-temporal manipulation of biological entities is often required for a deeper functional understanding of the underlying biological process. Here we present a home-built integrated framework and optical design that combines three-dimensional light-sheet imaging over time with precise spatio-temporal optical manipulations induced by short infrared laser pulses. We demonstrate their potential for sub-cellular ablation of neurons and nuclei, tissue cauterization and optogenetics by using the Drosophila melanogaster and zebrafish model systems.
378.

Chemical and Light Inducible Epigenome Editing.

blue Cryptochromes LOV domains Review
Int J Mol Sci, 3 Feb 2020 DOI: 10.3390/ijms21030998 Link to full text
Abstract: The epigenome defines the unique gene expression patterns and resulting cellular behaviors in different cell types. Epigenome dysregulation has been directly linked to various human diseases. Epigenome editing enabling genome locus-specific targeting of epigenome modifiers to directly alter specific local epigenome modifications offers a revolutionary tool for mechanistic studies in epigenome regulation as well as the development of novel epigenome therapies. Inducible and reversible epigenome editing provides unique temporal control critical for understanding the dynamics and kinetics of epigenome regulation. This review summarizes the progress in the development of spatiotemporal-specific tools using small molecules or light as inducers to achieve the conditional control of epigenome editing and their applications in epigenetic research.
379.

New Pioneers of Optogenetics in Neuroscience.

blue red Cryptochromes LOV domains Phytochromes Review
Adv Exp Med Biol, 26 Jan 2020 DOI: 10.1007/5584_2019_473 Link to full text
Abstract: Optogenetics have recently increased in popularity as tools to study behavior in response to the brain and how these trends relate back to a neuronal circuit. Additionally, the high demand for human cerebral tissue in research has led to the generation of a new model to investigate human brain development and disease. Human Pluripotent Stem Cells (hPSCs) have been previously used to recapitulate the development of several tissues such as intestine, stomach and liver and to model disease in a human context, recently new improvements have been made in the field of hPSC-derived brain organoids to better understand overall brain development but more specifically, to mimic inter-neuronal communication. This review aims to highlight the recent advances in these two separate approaches of brain research and to emphasize the need for overlap. These two novel approaches would combine the study of behavior along with the specific circuits required to produce the signals causing such behavior. This review is focused on the current state of the field, as well as the development of novel optogenetic technologies and their potential for current scientific study and potential therapeutic use.
380.

Optogenetics reveals Cdc42 local activation by scaffold-mediated positive feedback and Ras GTPase.

blue CRY2/CIB1 S. pombe Control of cytoskeleton / cell motility / cell shape
PLoS Biol, 24 Jan 2020 DOI: 10.1371/journal.pbio.3000600 Link to full text
Abstract: Local activity of the small GTPase Cdc42 is critical for cell polarization. Whereas scaffold-mediated positive feedback was proposed to break symmetry of budding yeast cells and produce a single zone of Cdc42 activity, the existence of similar regulation has not been probed in other organisms. Here, we address this problem using rod-shaped cells of fission yeast Schizosaccharomyces pombe, which exhibit zones of active Cdc42-GTP at both cell poles. We implemented the CRY2-CIB1 optogenetic system for acute light-dependent protein recruitment to the plasma membrane, which allowed to directly demonstrate positive feedback. Indeed, optogenetic recruitment of constitutively active Cdc42 leads to co-recruitment of the guanine nucleotide exchange factor (GEF) Scd1 and endogenous Cdc42, in a manner dependent on the scaffold protein Scd2. We show that Scd2 function is dispensable when the positive feedback operates through an engineered interaction between the GEF and a Cdc42 effector, the p21-activated kinase 1 (Pak1). Remarkably, this rewired positive feedback confers viability and allows cells to form 2 zones of active Cdc42 even when otherwise essential Cdc42 activators are lacking. These cells further revealed that the small GTPase Ras1 plays a role in both localizing the GEF Scd1 and promoting its activity, which potentiates the positive feedback. We conclude that scaffold-mediated positive feedback, gated by Ras activity, confers robust polarization for rod-shape formation.
381.

Optogenetic modulation of TrkB signaling in the mouse brain.

blue CRY2/CRY2 mouse in vivo Signaling cascade control
J Mol Biol, 18 Jan 2020 DOI: 10.1016/j.jmb.2020.01.010 Link to full text
Abstract: Optogenetic activation of receptors has advantages compared with chemical or ligand treatment because of its high spatial and temporal precision. Especially in the brain, the use of a genetically encoded light-tunable receptor is superior to direct infusion or systemic drug treatment. We applied light activatable TrkB receptor in mouse brain with reduced basal activity by incorporating Cry2PHR mutant, Opto-cytTrkB(E281A). Upon AAV mediated gene delivery, this form was expressed at sufficient levels in the mouse hippocampus (HPC) and medial entorhinal cortex (MEC) retaining normal canonical signal transduction by blue light stimulus, even by delivery of non-invasive LED light on the mouse head. Within target cells, where its expression was driven by a cell type-specific promoter, Opto-cytTrkB(E281A)-mediated TrkB signaling could be controlled by adjusting light-stimulation conditions. We further demonstrated that Opto-cytTrkB(E281A) could locally induce TrkB signaling in axon terminals in the MEC-HPC. In summary, Opto-cytTrkB(E281A) will be useful for elucidating time- and region-specific roles of TrkB signaling ranging from cellular function to neural circuit mechanisms.
382.

Shape-morphing living composites.

blue CRY2/CIB1 S. cerevisiae Transgene expression
Sci Adv, 17 Jan 2020 DOI: 10.1126/sciadv.aax8582 Link to full text
Abstract: This work establishes a means to exploit genetic networks to create living synthetic composites that change shape in response to specific biochemical or physical stimuli. Baker's yeast embedded in a hydrogel forms a responsive material where cellular proliferation leads to a controllable increase in the composite volume of up to 400%. Genetic manipulation of the yeast enables composites where volume change on exposure to l-histidine is 14× higher than volume change when exposed to d-histidine or other amino acids. By encoding an optogenetic switch into the yeast, spatiotemporally controlled shape change is induced with pulses of dim blue light (2.7 mW/cm2). These living, shape-changing materials may enable sensors or medical devices that respond to highly specific cues found within a biological milieu.
383.

Tunable light and drug induced depletion of target proteins.

blue CRY2/CIB1 iLID BHK-21 C. elegans in vivo HeLa Cell death
Nat Commun, 16 Jan 2020 DOI: 10.1038/s41467-019-14160-8 Link to full text
Abstract: Biological processes in development and disease are controlled by the abundance, localization and modification of cellular proteins. We have developed versatile tools based on recombinant E3 ubiquitin ligases that are controlled by light or drug induced heterodimerization for nanobody or DARPin targeted depletion of endogenous proteins in cells and organisms. We use this rapid, tunable and reversible protein depletion for functional studies of essential proteins like PCNA in DNA repair and to investigate the role of CED-3 in apoptosis during Caenorhabditis elegans development. These independent tools can be combined for spatial and temporal depletion of different sets of proteins, can help to distinguish immediate cellular responses from long-term adaptation effects and can facilitate the exploration of complex networks.
384.

Optogenetic tools for dissecting complex intracellular signaling pathways.

blue red Cryptochromes LOV domains Phytochromes Review
Biochem Biophys Res Commun, 14 Jan 2020 DOI: 10.1016/j.bbrc.2019.12.132 Link to full text
Abstract: Intracellular signaling forms complicated networks that involve dynamic alterations of the protein-protein interactions occurring inside a cell. To dissect these complex networks, light-inducible optogenetic technologies have offered a novel approach for modulating the function of intracellular machineries in space and time. Optogenetic approaches combine genetic and optical methods to initiate and control protein functions within live cells. In this review, we provide an overview of the optical strategies that can be used to manipulate intracellular signaling proteins and secondary messengers at the molecular level. We briefly address how an optogenetic actuator can be engineered to enhance homo- or hetero-interactions, survey various optical tools and targeting strategies for controlling cell-signaling pathways, examine their extension to in vivo systems and discuss the future prospects for the field.
385.

Non-invasive optical control of endogenous Ca2+ channels in awake mice.

blue CRY2/CRY2 CRY2clust CRY2olig HeLa mouse in vivo Immediate control of second messengers
Nat Commun, 10 Jan 2020 DOI: 10.1038/s41467-019-14005-4 Link to full text
Abstract: Optogenetic approaches for controlling Ca2+ channels provide powerful means for modulating diverse Ca2+-specific biological events in space and time. However, blue light-responsive photoreceptors are, in principle, considered inadequate for deep tissue stimulation unless accompanied by optic fiber insertion. Here, we present an ultra-light-sensitive optogenetic Ca2+ modulator, named monSTIM1 encompassing engineered cryptochrome2 for manipulating Ca2+ signaling in the brain of awake mice through non-invasive light delivery. Activation of monSTIM1 in either excitatory neurons or astrocytes of mice brain is able to induce Ca2+-dependent gene expression without any mechanical damage in the brain. Furthermore, we demonstrate that non-invasive Ca2+ modulation in neurons can be sufficiently and effectively translated into changes in behavioral phenotypes of awake mice.
386.

Light-mediated control of Gene expression in mammalian cells.

blue near-infrared red Cryptochromes LOV domains Phytochromes Review
Neurosci Res, 7 Jan 2020 DOI: 10.1016/j.neures.2019.12.018 Link to full text
Abstract: Taking advantage of the recent development of genetically-defined photo-activatable actuator molecules, cellular functions, including gene expression, can be controlled by exposure to light. Such optogenetic strategies enable precise temporal and spatial manipulation of targeted single cells or groups of cells at a level hitherto impossible. In this review, we introduce light-controllable gene expression systems exploiting blue or red/far-red wavelengths and discuss their inherent properties potentially affecting induced downstream gene expression patterns. We also discuss recent advances in optical devices that will extend the application of optical gene expression control technologies into many different areas of biology and medicine.
387.

Light Control of Gene Expression Dynamics.

blue red Cryptochromes LOV domains Phytochromes Review
Adv Exp Med Biol, 6 Jan 2020 DOI: 10.1007/978-981-15-8763-4_14 Link to full text
Abstract: The progress in live-cell imaging technologies has revealed diverse dynamic patterns of transcriptional activity in various contexts. The discovery raised a next question of whether the gene expression patterns play causative roles in triggering specific biological events or not. Here, we introduce optogenetic methods that realize optical control of gene expression dynamics in mammalian cells and would be utilized for answering the question, by referring the past, the present, and the future.
388.

Visualization and Manipulation of Intracellular Signaling.

blue near-infrared red UV Cryptochromes LOV domains Phytochromes UV receptors Review
Adv Exp Med Biol, 6 Jan 2020 DOI: 10.1007/978-981-15-8763-4_13 Link to full text
Abstract: Cells respond to a wide range of extracellular stimuli, and process the input information through an intracellular signaling system comprised of biochemical and biophysical reactions, including enzymatic and protein-protein interactions. It is essential to understand the molecular mechanisms underlying intracellular signal transduction in order to clarify not only physiological cellular functions but also pathological processes such as tumorigenesis. Fluorescent proteins have revolutionized the field of life science, and brought the study of intracellular signaling to the single-cell and subcellular levels. Much effort has been devoted to developing genetically encoded fluorescent biosensors based on fluorescent proteins, which enable us to visualize the spatiotemporal dynamics of cell signaling. In addition, optogenetic techniques for controlling intracellular signal transduction systems have been developed and applied in recent years by regulating intracellular signaling in a light-dependent manner. Here, we outline the principles of biosensors for probing intracellular signaling and the optogenetic tools for manipulating them.
389.

Functional Modulation of Receptor Proteins on Cellular Interface with Optogenetic System.

blue green red UV violet Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Exp Med Biol, 6 Jan 2020 DOI: 10.1007/978-981-15-8763-4_15 Link to full text
Abstract: In multicellular organisms, living cells cooperate with each other to exert coordinated complex functions by responding to extracellular chemical or physical stimuli via proteins on the plasma membrane. Conventionally, chemical signal transduction or mechano-transduction has been investigated by chemical, genetic, or physical perturbation; however, these methods cannot manipulate biomolecular reactions at high spatiotemporal resolution. In contrast, recent advances in optogenetic perturbation approaches have succeeded in controlling signal transduction with external light. The methods have enabled spatiotemporal perturbation of the signaling, providing functional roles of the specific proteins. In this chapter, we summarize recent advances in the optogenetic tools that modulate the function of a receptor protein. While most optogenetic systems have been devised for controlling ion channel conductivities, the present review focuses on the other membrane proteins involved in chemical transduction or mechano-transduction. We describe the properties of natural or artificial photoreceptor proteins used in optogenetic systems. Then, we discuss the strategies for controlling the receptor protein functions by external light. Future prospects of optogenetic tool development are discussed.
390.

Photoreaction Mechanisms of Flavoprotein Photoreceptors and Their Applications.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Adv Exp Med Biol, 6 Jan 2020 DOI: 10.1007/978-981-15-8763-4_11 Link to full text
Abstract: Three classes of flavoprotein photoreceptors, cryptochromes (CRYs), light-oxygen-voltage (LOV)-domain proteins, and blue light using FAD (BLUF)-domain proteins, have been identified that control various physiological processes in multiple organisms. Accordingly, signaling activities of photoreceptors have been intensively studied and the related mechanisms have been exploited in numerous optogenetic tools. Herein, we summarize the current understanding of photoactivation mechanisms of the flavoprotein photoreceptors and review their applications.
391.

Stick-slip dynamics of cell adhesion triggers spontaneous symmetry breaking and directional migration of mesenchymal cells on one-dimensional lines.

blue CRY2/CIB1 NIH/3T3 Control of cytoskeleton / cell motility / cell shape
Sci Adv, 3 Jan 2020 DOI: 10.1126/sciadv.aau5670 Link to full text
Abstract: Directional cell motility relies on the ability of single cells to establish a front-rear polarity and can occur in the absence of external cues. The initiation of migration has often been attributed to the spontaneous polarization of cytoskeleton components, while the spatiotemporal evolution of cell-substrate interaction forces has yet to be resolved. Here, we establish a one-dimensional microfabricated migration assay that mimics the complex in vivo fibrillar environment while being compatible with high-resolution force measurements, quantitative microscopy, and optogenetics. Quantification of morphometric and mechanical parameters of NIH-3T3 fibroblasts and RPE1 epithelial cells reveals a generic stick-slip behavior initiated by contractility-dependent stochastic detachment of adhesive contacts at one side of the cell, which is sufficient to trigger cell motility in 1D in the absence of pre-established polarity. A theoretical model validates the crucial role of adhesion dynamics, proposing that front-rear polarity can emerge independently of a complex self-polarizing system.
392.

Strategies for Engineering and Rewiring Kinase Regulation.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Trends Biochem Sci, 19 Dec 2019 DOI: 10.1016/j.tibs.2019.11.005 Link to full text
Abstract: Eukaryotic protein kinases (EPKs) catalyze the transfer of a phosphate group onto another protein in response to appropriate regulatory cues. In doing so, they provide a primary means for cellular information transfer. Consequently, EPKs play crucial roles in cell differentiation and cell-cycle progression, and kinase dysregulation is associated with numerous disease phenotypes including cancer. Nonnative cues for synthetically regulating kinases are thus much sought after, both for dissecting cell signaling pathways and for pharmaceutical development. In recent years advances in protein engineering and sequence analysis have led to new approaches for manipulating kinase activity, localization, and in some instances specificity. These tools have revealed fundamental principles of intracellular signaling and suggest paths forward for the design of therapeutic allosteric kinase regulators.
393.

Optogenetic approaches to investigate spatiotemporal signaling during development.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Top Dev Biol, 18 Dec 2019 DOI: 10.1016/bs.ctdb.2019.11.009 Link to full text
Abstract: Embryogenesis is coordinated by signaling pathways that pattern the developing organism. Many aspects of this process are not fully understood, including how signaling molecules spread through embryonic tissues, how signaling amplitude and dynamics are decoded, and how multiple signaling pathways cooperate to pattern the body plan. Optogenetic approaches can be used to address these questions by providing precise experimental control over a variety of biological processes. Here, we review how these strategies have provided new insights into developmental signaling and discuss how they could contribute to future investigations.
394.

Engineered BRET-Based Biologic Light Sources Enable Spatiotemporal Control over Diverse Optogenetic Systems.

blue CRY2/CIB1 FKF1/GI iLID Magnets HEK293T HeLa in vitro Extracellular optogenetics
ACS Synth Biol, 17 Dec 2019 DOI: 10.1021/acssynbio.9b00277 Link to full text
Abstract: Light-inducible optogenetic systems offer precise spatiotemporal control over a myriad of biologic processes. Unfortunately, current systems are inherently limited by their dependence on external light sources for their activation. Further, the utility of laser/LED-based illumination strategies are often constrained by the need for invasive surgical procedures to deliver such devices and local heat production, photobleaching and phototoxicity that compromises cell and tissue viability. To overcome these limitations, we developed a novel BRET-activated optogenetics (BEACON) system that employs biologic light to control optogenetic tools. BEACON is driven by self-illuminating bioluminescent-fluorescent proteins that generate "spectrally tuned" biologic light via bioluminescence resonance energy transfer (BRET). Notably, BEACON robustly activates a variety of commonly used optogenetic systems in a spatially restricted fashion, and at physiologically relevant time scales, to levels that are achieved by conventional laser/LED light sources.
395.

Primary Cilia Signaling Promotes Axonal Tract Development and Is Disrupted in Joubert Syndrome-Related Disorders Models.

blue bPAC (BlaC) CRY2/CIB1 primary mouse deep cerebellar nuclei neurons Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Dev Cell, 16 Dec 2019 DOI: 10.1016/j.devcel.2019.11.005 Link to full text
Abstract: Appropriate axonal growth and connectivity are essential for functional wiring of the brain. Joubert syndrome-related disorders (JSRD), a group of ciliopathies in which mutations disrupt primary cilia function, are characterized by axonal tract malformations. However, little is known about how cilia-driven signaling regulates axonal growth and connectivity. We demonstrate that the deletion of related JSRD genes, Arl13b and Inpp5e, in projection neurons leads to de-fasciculated and misoriented axonal tracts. Arl13b deletion disrupts the function of its downstream effector, Inpp5e, and deregulates ciliary-PI3K/AKT signaling. Chemogenetic activation of ciliary GPCR signaling and cilia-specific optogenetic modulation of downstream second messenger cascades (PI3K, AKT, and AC3) commonly regulated by ciliary signaling receptors induce rapid changes in axonal dynamics. Further, Arl13b deletion leads to changes in transcriptional landscape associated with dysregulated PI3K/AKT signaling. These data suggest that ciliary signaling acts to modulate axonal connectivity and that impaired primary cilia signaling underlies axonal tract defects in JSRD.
396.

Directed evolution improves the catalytic efficiency of TEV protease.

blue AsLOV2 CRY2/CIB1 HEK293T rat cortical neurons S. cerevisiae Endogenous gene expression
Nat Methods, 9 Dec 2019 DOI: 10.1038/s41592-019-0665-7 Link to full text
Abstract: Tobacco etch virus protease (TEV) is one of the most widely used proteases in biotechnology because of its exquisite sequence specificity. A limitation, however, is its slow catalytic rate. We developed a generalizable yeast-based platform for directed evolution of protease catalytic properties. Protease activity is read out via proteolytic release of a membrane-anchored transcription factor, and we temporally regulate access to TEV's cleavage substrate using a photosensory LOV domain. By gradually decreasing light exposure time, we enriched faster variants of TEV over multiple rounds of selection. Our TEV-S153N mutant (uTEV1Δ), when incorporated into the calcium integrator FLARE, improved the signal/background ratio by 27-fold, and enabled recording of neuronal activity in culture with 60-s temporal resolution. Given the widespread use of TEV in biotechnology, both our evolved TEV mutants and the directed-evolution platform used to generate them could be beneficial across a wide range of applications.
397.

Blue light-triggered optogenetic system for treating uveal melanoma.

blue CRY2/CIB1 B16-F0 mouse in vivo Signaling cascade control
Oncogene, 6 Dec 2019 DOI: 10.1038/s41388-019-1119-5 Link to full text
Abstract: Uveal melanoma is the most common intraocular primary malignancy in adults and has been considered a fatal disease for decades. Optogenetics is an emerging technique that can control the activation of signaling components via irradiation with visible light. The clinical translation of optogenetics has been limited because of the need for surgical implantation of electrodes and relatively shallow tissue penetration. As visible light easily penetrates the eyes, we hypothesized that an optogenetics approach can be an effective treatment of uveal melanoma without surgery. In this study, we evaluated the feasibility of this strategy by using a genetically encoded optogenetic system based on reversible blue light-induced binding pairs between Fas-CIB1-EGFP and CRY2-mCherry-FADD. Subretinal injection of B16 cells was performed to create a uveal melanoma model. Plasmids pairs were co-transfected into B16 cells. We found that blue light irradiation dynamically controlled the translocation of FADD to Fas on the plasma membrane and induced the apoptosis of B16 cells transfected with the optogenetic nanosystem in vitro. Moreover, the blue light-controlled optogenetic nanosystem suppressed the growth of uveal melanoma in vivo by inducing apoptosis. These results suggest that light-controlled optogenetic therapy can be used as a potential novel therapeutic strategy for uveal melanoma.
398.

A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.

blue CRY2/CIB1 S. cerevisiae
Biotechnol Bioeng, 2 Dec 2019 DOI: 10.1002/bit.27234 Link to full text
Abstract: Optogenetic tools for controlling gene expression are ideal for tuning synthetic biological networks due to the exquisite spatiotemporal control available with light. Here we develop an optogenetic system for gene expression control integrated with an existing yeast toolkit allowing for rapid, modular assembly of light-controlled circuits in the important chassis organism Saccharomyces cerevisiae. We reconstitute activity of a split synthetic zinc-finger transcription factor (TF) using light-induced dimerization mediated by the proteins CRY2 and CIB1. We optimize function of this split TF and demonstrate the utility of the toolkit workflow by assembling cassettes expressing the TF activation domain and DNA-binding domain at different levels. Utilizing this TF and a synthetic promoter we demonstrate that light-intensity and duty-cycle can be used to modulate gene expression over the range currently available from natural yeast promoters. This work allows for rapid generation and prototyping of optogenetic circuits to control gene expression in Saccharomyces cerevisiae. This article is protected by copyright. All rights reserved.
399.

Elucidating cyclic AMP signaling in subcellular domains with optogenetic tools and fluorescent biosensors.

blue red violet BLUF domains Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Biochem Soc Trans, 14 Nov 2019 DOI: 10.1042/bst20190246 Link to full text
Abstract: The second messenger 3',5'-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.
400.

Structural Basis of Design and Engineering for Advanced Plant Optogenetics.

blue green red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Plant Sci, 4 Nov 2019 DOI: 10.1016/j.tplants.2019.10.002 Link to full text
Abstract: In optogenetics, light-sensitive proteins are specifically expressed in target cells and light is used to precisely control the activity of these proteins at high spatiotemporal resolution. Optogenetics initially used naturally occurring photoreceptors to control neural circuits, but has expanded to include carefully designed and engineered photoreceptors. Several optogenetic constructs are based on plant photoreceptors, but their application to plant systems has been limited. Here, we present perspectives on the development of plant optogenetics, considering different levels of design complexity. We discuss how general principles of light-driven signal transduction can be coupled with approaches for engineering protein folding to develop novel optogenetic tools. Finally, we explore how the use of computation, networks, circular permutation, and directed evolution could enrich optogenetics.
Submit a new publication to our database